Skip to main content

Course Notes

  1. Tuesday, Jan. 12: STOR893-01-12-2016  – Organizational Matters, What is OODA?, Visualization by Projection, Object Space and Descriptor Space, Curves as Data Objects, Data Representation Issues, PCA Visualization, PCA Terminology, Toy Examples
  2. Thursday, Jan. 14: STOR893-01-14-2016 – Web Page, Toy Example, Spanish Mortality Data, Time Series of Curves, Chemometric Data
  3. Tuesday, Jan. 19: STOR893-01-19-2016 – RNA-seq Data, Linear Algebra Background, Multivariate Probability Background, Limitations of PCA, NCI-60 Data, Matlab Software (Example Script File VisualizeNextGen2011.m, Corresponding Data Set exonsMarron.csv), Marginal Distribution Plots
  4. Thursday, Jan. 21: STOR893-01-21-2016 – Marginal Distribution Plots – Chemometric Data, Transformation, Melanoma Data, Yeast Cell Cycle Data
  5. Tuesday, Jan. 26: STOR893-01-26-2016 – Yeast Cell Cycle Data – Fourier Analysis, Batch Adjustment
  6. Thursday, Jan. 28: STOR893-01-28-2016 – DiProPerm Testing, Chemometric Data, High Dimension Low Sample Size (HDLSS) Asymptotics, Geometric Representation
  7. Tuesday, Feb. 2: STOR893-02-02-2016 –  HDLSS asymptotics, Correlation vs. Independence, Assumptions for Geometric Representation, PCA Consistency
  8. Thursday, Feb. 4: STOR893-02-04-2016 – HDLSS Analysis of DiProPerm, Cornea Data, Robust Statistics, Outliers in PCA
  9. Tuesday, Feb. 9: STOR893-02-09-2016  – Cornea Data, Robust Statistics, Spherical PCA, Elliptical PCA, Big Picture View of PCA, GWAS data
  10. Thursday, Feb. 11: STOR893-02-11-2016 – GWAS data, VL1 PCA for HDLSS Robustness Against Family Effects, PCA History and Background, PCA Mathematics – Anna Zhao: Surviving in the NBA
  11. Tuesday, Feb. 16: STOR893-02-16-2016 – PCA Mathematics, PCA Redistribution of Energy, Correlation PCA, PCA vs, SVD, Different Views, Data Representation  – Wes Crouse: Bayesian Clustering and Data Integration
  12. Thursday, Feb. 18: STOR893-02-18-2016 – Dimension Reduction by PCA, PCA Simulation, Directions for Graphical Displays, Dual PCA, Dual Analysis of Demography Data, Classification / Discrimination, Fisher Linear Discrimination – Sherif Faraq: Rational Design of ED Free Chemicals
  13. Tuesday, Feb. 23: STOR893-02-23-2016 – FLD Nonparametric Derivation, FLD Likelihood Derivation, Mahalanobis Distance, Classical Summary via Toy Examples, HDLSS examples – Jessime Kirk: lncRNA Functional Prediction
  14. Thursday, Feb. 25: STOR893-02-25-2016-part1STOR893-02-25-2016-part2, STOR893-02-25-2016-part3  – HDLSS Discrimination, Maximal Data Piling, Kernel Embedding – Erika Helgeson: Nonparametric Cluster Significance Testing
  15. Tuesday, March 1:  STOR893-03-01-2016 – Kernel Embedding: Naive Explicit and Implicit, Radial Basis Functions, Support Vector Machines
  16. Thursday, March 3: STOR893-03-03-2016-part1STOR893-03-03-2016-part2 – Distance Weighted Discrimination,DWD & Face Data, DWD Simulations, DWD Batch Adjustment, SVM & DWD Tuning – Frank Teets: Characterizing Protein Assembly Graphs
  17. Tuesday, March 8: STOR893-03-08-2016-part1STOR893-03-08-2016-part2 – Radial DWD & Virus Hunting, Melanoma Data & ROC Curves, Clusters in Mass Flux Data, Statistical Smoothing (Density & Regression Estimation)
  18. Thursday, March 10: STOR893-03-10-2016-part1STOR893-03-10-2016-part2 – Smoothing Bandwidth Selection, Scale Space, SiZer, Revisit Cell cycle Data, Clustering, K-means – Jasmine Yang:  OODA of PNC Data
  19. Tuesday, March 15: No Class – Spring Break
  20. Thursday, March 17: No Class – Spring Break
  21. Tuesday, March 22: – STOR893-03-22-2016-QingFeng-Trans – Qing Feng – Automatic Transformations
  22. Thursday, March 24: – STOR893-03-24-2016-QingFeng-JIVE – Qing Feng – JIVE
  23. Tuesday, March 29: STOR893-03-29-2016 – Clustering, K-Means, SWISS Score, Hierarchical Clustering – Xiao Yang: Analysis of Climate Data, Huijun Qian: Quantitative Analysis of Non-muscle Myosin II Minifilaments
  24. Thursday, March 31: STOR893-03-31-2016 – SigClust, QQ envelope plots, Shape statistics – Rui Wang
  25. Tuesday, April 5: – STOR893-04-05-2016-HyowonAn – Hyowon An – L-Statistics
  26. Thursday, April 7: – STOR983-04-07-2016-QunqunYu-part1, STOR983-04-07-2016-QunqunYu-part2STOR983-04-07-2016-QunqunYu-part3 – Qunqun Yu – OODA of Brain Imaging Data
  27. Tuesday, April 12: – STOR893-04-12-2016 – SigClust & Genetic Examples, Shapes as Data Objects, Landmark Based Shape, Equivalence Relations, Quotient Space – Muyong Wang: OODA of Human Microbiome Data, Hanyan Wang: Tissue MicroArray Data, Ruituo Fan: Functional Additive Regression
  28. Thursday, April 14: – STOR893-04-14-2016 – Manifold Descriptor Space, OODA in Image Analysis, Shape Representations – Nuvan Rathnayaka: Semi-Supervised Clustering, Leo Yufeng Liu: Image Oriented Data Analysis: Spatial Regularized Image Classification, Yichen Tu: PCA document reconstruction for email classification
  29. Tuesday, April 19: – STOR893-04-19-2016 – Medial Shape Representations, Bladder-Prostate-Rectum Data, Composite Prinicpal Nested Spheres – Mahmoud Mostapha: Fast Editing of Many Object Segmentation, Megan Quinn ; Smoothing in Human Growth Data
  30. Thursday, April 21: – STOR893-04-21-2016 – Backwards PCA, Nonnegative Matrix Factorization, Principal Curves, Topics not Covered: ICA, Trees, Purely Metric analysis (MDS) – Heejoon Jo: Clustering using RNAseq and Junction Information, Whitney Zheng: Device usage anomaly detection using Time Series, Iain Carmichael: Connections between SVM and other linear classifiers
  31. Tuesday, April 26:  No Class – Marron Out of Town

References

Ahn, J., Marron, J. S., Muller, K. M., & Chi, Y. Y. (2007). The high-dimension, low-sample-size geometric representation holds under mild conditions. Biometrika, 94(3), 760-766 (cited 1/28/16)

Ahn, J., & Marron, J. S. (2010). The maximal data piling direction for discrimination. Biometrika, 97(1), 254-259 (cited 9/23/14, 2/23/16)

Aizerman, A., Braverman, E. M., & Rozoner, L. I. (1964). Theoretical foundations of the potential function method in pattern recognition learning. Automation and remote control, 25, 821-837 (cited 2/25/16)

Alter, O., Brown, P. O., & Botstein, D. (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences, 97, 10101-10106 (cited 1/26/16)

Bai, Z. D., & Saranadasa, H. (1996). Effect of high dimension: by an example of a two sample problem. Statistica Sinica, 6(2), 311-329 (cited 1/26/16)

Benito, M., Parker, J., Du, Q., Wu, J., Xiang, D., Perou, C. M., & Marron, J. S. (2004) Adjustment of systematic microarray data biases. Bioinformatics, 20(1), 105-114 (1/26/16, 3/3/16)

Bickel, P. J. and Levina, E. (2004) Some theory for Fisher’s Linear Discriminant function, “naive Bayes”, and some alternatives when there are many more variables than observations, Bernoulli, 10, 989-1010 (cited 2/25/16)

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.  (cited 3/1/16)

Bloomfield, P. (2004) Fourier analysis of time series: an introduction. John Wiley & Sons (cited 1/26/16)

Bookstein, F. L. (1991). Morphometric Tools for Landmark Data, Cambridge: Cambridge University Press (cited 4/12/16)

Born, M. and Wolf, E. (1980) Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press, New York (cited 2/4/16)

Boser, B. E., Guyon, I. and Vapnik, V. (1992) A Training Algorithm for Optimal Margin Classifiers, in Fifth Annual Workshop on Computational Learning Theory, ACM (cited 2/25/16)

Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2 107–144 (electronic). (Update of, and a supplement to, the 1986 original.)  (cited 1/28/16)

Brillinger, D. R. (2001). Time series: data analysis and theory (Vol. 36). Siam (cited 1/26/16)

Brooks, J. P., Dulá, J. H., & Boone, E. L. (2013). A pure L1-norm principal component analysis. Computational statistics & data analysis, 61, 83-98 (cited 2/4/16)

Burges, C. J. C. (1998) A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 2, 121-167 (cited 3/1/16)

Cabanski, C. R., Qi, Y., Yin, X., Bair, E., Hayward, M. C., Fan, C., Li, J., Wilkerson, M. D., Marron, J. S., Perou, C. M. and Hayes, D. N. (2010) SWISS MADE: Standardized WithIn Class Sum of Squares to Evaluate Methodologies and Dataset Elements, PLoS ONE, 5(3): e9905.doi:10.1371/journal.pone.0009905, PMCID: PMC2845619.   (cited 3/29/16)

Cai, T., Liu, W., & Xia, Y. (2014). Two‐sample test of high dimensional means under dependence. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(2), 349-372 (cited 1/26/16)

Cates, J., Fletcher, P.T., Styner, M., Shenton, M., and Whitaker, R. T. (2007) Shape Modeling and Analysis with Entropy-Based Particle Systems, In Proceedings of Information Processing in Medical Imaging (IPMI) 2007, LNCS 4584, 333-345 (cited 4/14/16)

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245-276 (cited 2/11/16)

Chaudhuri, P. and Marron, J. S. (1999) SiZer for exploration of structure in curves, Journal of the American Statistical Association, 94, 807-823 (cited 3/10/16)

Chaudhuri, P., & Marron, J. S. (2000). Scale space view of curve estimation. Annals of Statistics, 408-428 (cited 3/10/16)

Cootes, T. F., Hill, A., Taylor, C. J. and Haslam, J. (1993) The use of active shape models for locating structures in medical images, Information in Medical Imaging, H. H. Barret and A. F. Gmitro, eds. Lecture Notes in Computer Science 687, 33-47, Springer Verlag, Berlin (cited 4/14/16)

Cristianini, N. and Shawe-Taylor, J. (2000) An Introduction to Support Vector Machines, Cambridge University Press (cited 3/1/16)

Damon, J., & Marron, J. S. (2014). Backwards principal component analysis and principal nested relations. Journal of Mathematical Imaging and Vision, 50(1-2), 107-114 (cited 4/21/16)

DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44, 837-845 (cited 3/8/16)

Domingos, P. & Pazzani, M. (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29:103–­137 (cited 2/18/16)

Dryden, I.L., Mardia, K.V. (1998) Statistical Shape Analysis, Wiley, Chichester (cited 4/12/16)

Duda, R. O. and Hart P. E. (1973) Pattern Classification and Scene Analysis, Wiley, New York (cited 2/18/16)

Duda, R. O., Hart P. E. and Stork, D. G. (2001) Pattern Classification, Wiley, New York (cited 2/18/16 2/23/16)

El Karoui, N. (2010). The spectrum of kernel random matrices. The Annals of Statistics, 38(1), 1-50 (cited 3/3/16)

Fan, J., & Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman and Hall, London (cited 3/8/16)

Fisher, N. I. (1983) Graphical Methods in Nonparametric Statistics: A Review and Annotated Bibliography, International Statistical Review, 51, 25-58  (cited 3/31/16)

Fisher, R.A. (1936) The Use of Multiple Measurements in Taxonomic Problems, Annals of Eugenics, 7, 179-188  (cited 2/18/16)

Fisher, N. I., Lewis, T. and Engleton, B. J. J. (1987) Statistical analysis of spherical data, Cambridge University Press, Cambridge (cited 4/14/16)

Fisher, N. I. (1993) Statistical analysis of circular data, Cambridge University Press, Cambridge (cited 4/14/16)

Fletcher, P. T., Lu, C., Pizer, S. M., & Joshi, S. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. Medical Imaging, IEEE Transactions on, 23(8), 995-1005 (cited 4/19/16)

Fréchet, M. (1948) Les éléments aléatoires de nature quelconque dans un espace distancié, Annales de l’institut Henri Poincaré, 10, 215-310 (cited 4/14/16)

Gabriel, K. R. (1971) The biplot display of matrices with application to principal component analysis, Biometrika, 58, 467  (cited 2/18/16)

Gersho, A. and Gray, R. M. (1991) Vector Quantization and Signal Compression, Springer, New York  (cited 3/29/16)

Godtliebsen, F., Marron, J. S., & Chaudhuri, P. (2002). Significance in scale space for bivariate density estimation. Journal of Computational and Graphical Statistics, 11(1), 1-21 (cited 3/10/16)

Godtliebsen, F., Marron, J. S., & Chaudhuri, P. (2004). Statistical significance of features in digital images. Image and Vision Computing, 22(13), 1093-1104 (cited 3/10/16)

Godtliebsen, F., Marron, J. S., & Pizer, S. M. (2002). Significance in scale-space for clustering. Spatial clustering modeling. Chapman and Hall/CRC, 24-36 (cited 3/10/16)

Good, I. J., & Gaskins, R. A. (1980). Density estimation and bump-hunting by the penalized likelihood method exemplified by scattering and meteorite data. Journal of the American Statistical Association, 75(369), 42-56 (cited 3/8/16)

Gower, J. C. (1974) The mediancentre, Applied Statistics, 23, 466-470 (cited 2/4/16)

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics, Wiley (cited 3/8/16)

Haldane, J. B. S. (1948) Note on the median of a multivariate distribution, Biometrika, 35, 414-415 (cited 2/4/16)

Hall, P., Marron, J. S., & Neeman, A. (2005). Geometric representation of high dimension, low sample size data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(3), 427-444. (cited 1/28/16, 3/3/16)

Hampel, F. M., Ronchetti, E. R., Rouseeuw, P. J. and Stahel, W. A. (2011) Robust Statistics: the Approach Based on Influence Functions, Wiley, New York (cited 2/4/16)

Hannig, J., & Marron, J. S. (2006). Advanced distribution theory for SiZer. Journal of the American Statistical Association, 101(474), 484-499 (cited 3/10/16)

Hannig, J., Marron, J. S., & Riedi, R. (2001). Zooming statistics: Inference across scales. Journal of the Korean Statistical Society, 30(2), 327-345 (cited 3/10/16)

Hartigan, J. A. (1975) Clustering Algorithms, Wiley, New York  (cited 3/29/16)

Hastie, T., & Stuetzle, W. (1989). Principal curves. Journal of the American Statistical Association, 84(406), 502-516 (cited 4/19/16)

Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 83-85 (cited 3/1/16)

Hsu, C.-W. and Lin, C.-J. (2002) A comparison of methods for multiclass support vector machines, IEEE Transactions on Neural Networks, 13, 415-425 (cited 3/1/16)

Huang, H., Liu, Y., Yuan, M. and Marron J.S. (2014) Statistical Significance of Clustering Using Soft Thresholding, Journal of Computational and Graphical Statistics, DOI:10.1080/10618600.2014.948179 (cited 3/31/2016)

Huber, P. (2011) Robust Statistics. Wiley, New York (cited 2/4/16)

Huckemann, S., Hotz, T., & Munk, A. (2010). Intrinsic shape analysis: Geodesic PCA for Riemannian manifolds modulo isometric lie group actions. Statistica Sinica, 1-58 (cited 4/19/16)

Inselberg, A. (1985) The Plane with Parallel Coordinates, Visual Computer 1: 69–91 (cited 1/12/16)

Inselberg, A. (2009) Parallel Coordinates: VISUAL Multidimensional Geometry and its Applications. Springer, New York (cited 1/12/16)

Izenman, A. J., & Sommer, C. J. (1988). Philatelic mixtures and multimodal densities. Journal of the American Statistical association, 83(404), 941-953 (cited 3/8/16)

Jeong, J.-Y. (2009) Estimation of Probability Distributions on Multiple Anatomical Objects and Evaluation of Statistical Shape Models, Ph.D. Thesis, Department of Computer Science, University of North Carolina (cited 4/19/16)

Jolliffe, I. T. (2002) Principal Component Analysis, Springer, New York, 2nd Edition, ISBN 978-0-387-95442-4   (cited 2/11/16)

Jones, M. C., Marron, J. S., & Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 91(433), 401-407 (cited 3/8/16)

Jung, S., & Marron, J. S. (2009). PCA consistency in high dimension, low sample size context. The Annals of Statistics, 37(6B), 4104-4130 (cited 2/2/16)

Jung, S., Liu, X., Marron, J. S., & Pizer, S. M. (2010). Generalized PCA via the backward stepwise approach in image analysis. In Brain, Body and Machine (pp. 111-123). Springer Berlin Heidelberg (cited 4/19/16)

Jung, S., Foskey, M., & Marron, J. S. (2011). Principal arc analysis on direct product manifolds. The Annals of Applied Statistics, 578-603 (cited 4/19/16)

Jung, S., Dryden I. L., an Marron, J. S., (2012) Analysis of Principal Nested Spheres, Biometrika, doi: 10.1093/biomet/ass022 (cited 4/19/16)

Jung, S., Sen, A. and Marron, J. S. (2012), Boundary behavior in high dimension, low sample size asymptotics of PCA, The Journal of Multivariate Analysis,109, 190–203  (cited 2/2/16)

Kaufman, L. and Rousseeuw, P. J. (2005) Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, New York  (cited 3/29/2016)

Keleman, A. Szèkely, G. and Gerig, G. (1997 & 1999) Three dimensional model-based segmentation, TR-178 Technical Report Image Scinec Lab, ETH Zurich & Elastic model-based segmentation of 3-D neuroradiological daat sets, IEEE Transactions on Medical Imaging, 18, 828-839 (cited 4/14/16)

Kendall, D.G., Barden, D., Carne, T.K. and Le, H. (1999) Shape and Shape Theory, Wiley, Chichester (cited 4/12/16)

Kimes, P. K., Cabanski, C. R., Wilkerson, M. D., Zhao, N., Johnson, A. R., Perou, C. M., Makowski, L., Marron, J. S., Hayes, D. N. (2014) SigFuge: single gene clustering of RNA-seq reveals differential isoform usage among cancer samples, Nucleic Acids Research (2014): gku521 (cited 1/19/16)

Klein, R. J., Zeiss, C., Chew, E. Y., Tsai, J. Y., Sackler, R. S., Haynes, C., … & Bracken, M. B. (2005). Complement factor H polymorphism in age-related macular degeneration. Science, 308, 385-389 (cited 2/2/16)

Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29(2), 115-129 (cited 2/11/16)

LeBlanc, M., & Tibshirani, R. (1996). Combining estimates in regression and classification. Journal of the American Statistical Association, 91(436), 1641-1650 (cited 4/21/16)

Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788-791.

Lee, Y., Lin, Y. and Wahba, G. (2004) Multicategory Support Vector Machines, Theory, and Application to the Classification of Microarray Data and Satellite Radiance Data, Journal of the American Statistical Association, 99, 67-81 (cited 3/1/16)

Li, G. and Chen, Z. (1985) Projection pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo, Journal of the American Statistical Association, 80, 759-776 (cited 2/4/16)

Lindeberg, T. (1994) Scale Space Theory in Computer Vision, Kluwer (cited 3/10/16)

Liu, R. Y. (1990). On a notion of data depth based on random simplices. The Annals of Statistics, 18(1), 405-414 (cited 2/04/16)

Liu, X., Parker, J., Fan, C. Perou, C. M. and Marron, J. S. (2009) Visualization of Cross-Platform Microarray Normalization, in Batch Effects and Noise in Micorarray Experiments: Source and Solutions (A. Scherer, ed.), Wiley, New York, 167-181 (cited 3/3/16)

Liu, Y., Hayes, D. N., Nobel, A. and Marron, J. S. (2008) Statistical Significance of Clustering for High Dimension Low Sample Size Data, Journal of the American Statistical Association, 103, 1281-1293  (cited 3/31/16)

Locantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J. T., Cohen, K. L., … & Fan, J. (1999). Robust principal component analysis for functional data. Test, 8(1), 1-73 (cited 2/4/16)

MacQueen, J. B. (1967) Some Methods for Classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, 281-297, University of California Press, Berkeley  (cited 3/29/16)

Mardia, K. V.  (1972) Statistics of Directional Data,  Academic Press, London (cited 4/14/16)

Mardia, K. V. and Jupp, P. E. (2000) Directional Statistics, Wiley, New York (cited 4/14/16)

Maronna, R. Martin, D., and Yohai, V. (2006) Robust Statistics: Theory and Methods, Wiley, New York (cited 2/4/16)

Marron, J. S., & Wand, M. P. (1992). Exact mean integrated squared error. The Annals of Statistics, 712-736 (cited 3/10/16)

Marron, J. S., Todd, M. J., & Ahn, J. (2007). Distance-weighted discrimination. Journal of the American Statistical Association, 102(480), 1267-1271 (cited 3/1/16)

Marron, J. S. & Alonso, A. M. (2014) Overview of object oriented data analysis, Biometrical Journal, 56, 732-753 (cited 1/12/16, 1/14/16)

Marron, J. S., Ramsay, J. O., Sangalli, L. M., & Srivastava, A. (2015). Functional data analysis of amplitude and phase variation. Statistical Science, 30(4), 468-484 (cited 4/21/16)

McLachlan, G. J. (2004) Discriminant Analysis and Statistical Pattern Recognition, Wiley-Interscience (cited 2/18/16)

Miao, D. (2015) Class-Sensitive Principal Components Analysis , UNC PhD Dissertation, https://cdr.lib.unc.edu/record/uuid:853d8c52-5b4a-4607-afff-9554b68bb6f5 (cited 2/23/16)

Miedema, J., Marron, J. S., Niethammer, M., Borland, D., Woosley, J., Coposky, J. & Thomas, N. E. (2012). Image and statistical analysis of melanocytic histology. Histopathology, 61(3), 436-444 (cited 1/21/16, 3/8/16)

Milasevic, P. and Ducharme, J. R. (1987) Uniqueness of the spatial median, Annals of Statistics, 15, 1332-1333 (cited 2/4/16)

Owen, S. J. (1998) A survey of Mesh Generation Technology, http://www.imr.sandia.gov/papers/imr7/owen_meshtech98.ps.gz (cited 4/14/16)

Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica Sinica, 17(4), 1617 (cited 1/28/16)

Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., … & Fluge, Ø. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747-752 (cited 3/31/16)

Pizer, S. M., Jung, S., Goswami, D., Vicory, J., Zhao, X., Chaudhuri, R., … & Marron, J. S. (2013). Nested sphere statistics of skeletal models. In Innovations for Shape Analysis (pp. 93-115). Springer Berlin Heidelberg (4/19/16)

Qiao, X., Zhang, H. H., Liu, Y., Todd, M. J., & Marron, J. S. (2010). Weighted distance weighted discrimination and its asymptotic properties. Journal of the American Statistical Association, 105(489), 401-414 (cited 3/3/16)

Ramsay, J. O. & Silverman, B. W. (2005) Functional Data Analysis, 2nd Edition, Springer, N.Y. ISBN 0-387-40080-X (cited 1/12/16)

Ramsay, J. O. & Silverman, B. W. (2002) Applied Functional Data Analysis, Springer, N.Y. ISBN 0-387-95414-7 (cited 1/12/16)

Rondonotti, V., Marron, J. S., & Park, C. (2007). SiZer for time series: a new approach to the analysis of trends. Electronic Journal of Statistics, 1, 268-289 (cited 3/10/16)

Rousseeuw, P. J., & Leroy, A. M. (2005). Robust regression and outlier detection (Vol. 589). John Wiley & Sons (cited 2/4/16)

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323-2326 (cited 4/21/16)

Royer, J.-Y. and Chang, T. (1991) Evidence for relative motions between the Indian and Australian Plates during the last 20 m.y. from plate tectonic reconstructions: Implications for the deformation of the Indo-Australian Plate, Journal of Geophysical Research, 96(B7), 11,779–11,802, doi:10.1029/91JB00897 (cited 4/19/16)

Sarle, W. S., and Kuo, A. H. (1993), The MODECLUS Procedure, Technical Report P-256, SAS Institute Inc., Cary  (cited 3/29/2016)

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press (cited 2/25/16)

Sen, S. K., Foskey, M., Marron, J. S., & Styner, M. A. (2008) Support vector machine for data on manifolds: An application to image analysis. In Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on (pp. 1195-1198). IEEE (cited 4/19/16)

Shabalin, A. A., Tjelmeland, H., Fan, C., Perou, C. M., & Nobel, A. B. (2008). Merging two gene-expression studies via cross-platform normalization. Bioinformatics, 24(9), 1154-1160 (cited 1/26/16)

Shen, D., Shen, H., & Marron, J. S. (2013). Consistency of sparse PCA in high dimension, low sample size contexts. Journal of Multivariate Analysis, 115, 317-333 (cited 2/2/16)

Shen, D., Shen, H., Zhu, H., & Marron, J. S. (2013). Surprising asymptotic conical structure in critical sample eigen-directions. arXiv preprint arXiv:1303.6171 (cited 2/2/16)

Shen, H., & Huang, J. Z. (2008). Sparse principal component analysis via regularized low rank matrix approximation. Journal of multivariate analysis, 99(6), 1015-1034 (cited 2/2/16)

Siddiqi, K. and Pizer, S. M. (2007) Medial Representations Mathematics Algorithms and Applications, Springer, New York (cited 4/19/16)

Spellman, P. T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D. and Futcher, B. (1998) Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization, Molecular Biology of the Cell, 9, 3273-3297 (cited 1/21/16)

Schölkopf, B., Smola, A. and Müller, K. R. (1998) Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10, 1299-1319 (cited 3/1/16)

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press (cited )

Schmitz, H. P. and Marron, J. S. (1992) Simultaneous estimation of several size distributions of  income, Econometric Theory, 8, 476-488 (cited 3/10/16)

Schwiegerling, J., Greivenkamp, J. E., & Miller, J. M. (1995) Representation of videokeratoscopic height data with Zernike polynomials. JOSA A, 12(10), 2105-2113 (cited 2/4/16)

Srivastava, M. S., Katayama, S., & Kano, Y. (2013). A two sample test in high dimensional data. Journal of Multivariate Analysis, 114, 349-358 (cited 1/26/16)

Staudte, R. G. and Sheather, S. J. (2011) Robust Estimation and Testing, Wiley, New York (cited 2/4/16)

Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319-2323 (cited 4/21/16)

Tukey, J. W. (1977). Exploratory data analysis, Pearson, N.Y. ISBN 978-0201076165.

Vapnik, V, N. (1982) Estimation of dependences based on empirical data, Springer (Russian version, 1979) (cited 3/1/16)

Vapnik, V. N. (1995) The nature of statistical learning theory, Springer (cited 3/1/16)

Wand, M. P., & Jones, M. C. (1994). Kernel smoothing. Crc Press (cited 3/8/16)

Wang, B., & Zou, H. (2015). Sparse distance weighted discrimination. Journal of Computational and Graphical Statistics, (just-accepted), 00-00 (cited 3/1/16)

Wang, H. and Marron, J. S. (2007) Object oriented data analysis: sets of trees, Annals of Statistics, 35, 1849-1873  (cited 1/12/16)

Wei, S., Lee, C., Wichers, L., & Marron, J. S. (2015). Direction-projection-permutation for high dimensional hypothesis tests. Journal of Computational and Graphical Statistics, (cited 1/26/16, 2/2/16)

Wright, F. A., Strug, L. J., Doshi, V. K., Commander, C. W., Blackman, S. M., Sun, L., … & Corey, M. (2011). Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13. 2. Nature genetics, 43(6), 539-546 (cited 2/4/16)

Xiong, J., Dittmer, D. P., & Marron, J. S. (2015). “Virus hunting” using radial distance weighted discrimination. The Annals of Applied Statistics, 9(4), 2090-2109 (cited 3/3/16)

Yata, K., & Aoshima, M. (2009). PCA consistency for non-Gaussian data in high dimension, low sample size context. Communications in Statistics—Theory and Methods, 38(16-17), 2634-2652 (cited 2/2/16)

Yata, K., & Aoshima, M. (2010). Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix. Journal of multivariate analysis, 101(9), 2060-2077 (cited 2/2/16)

Yata, K., & Aoshima, M. (2010). Intrinsic dimensionality estimation of high-dimension, low sample size data with d-asymptotics. Communications in Statistics—Theory and Methods, 39(8-9), 1511-1521 (cited 2/2/16)

Yata, K., & Aoshima, M. (2012). Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations. Journal of multivariate analysis, 105(1), 193-215 (cited 2/2/16)

Yata, K., & Aoshima, M. (2013). PCA consistency for the power spiked model in high-dimensional settings. Journal of multivariate analysis, 122, 334-354 (cited 2/2/16)

Yushkevich, P., Pizer, S. M., Joshi, S., and Marron, J. S. (2001) Intiutive, localized analysis of shape variability, Information Processing in Medical Imaging (IPMI), eds. Insana, M. F. and Leahy, R. M. 402-408 (cited 4/14/16)

Zhang, L., Marron, J. S., Shen, H., & Zhu, Z. (2007). Singular value decomposition and its visualization. Journal of Computational and Graphical Statistics, 16(4), 833-854 (cited 2/16/16)

Zhang, L., Lu, S., & Marron, J. S. (2015). Nested nonnegative cone analysis. Computational Statistics & Data Analysis, 88, 100-110 (cited 4/21/16)

Zhao, X., Marron, J.S. and Wells, M.T. (2004) The Functional Data View of Longitudinal Data, Statistica Sinica, 14, 789-808 (cited 1/21/16, 3/10/16)

 

Marron’s OODA Matlab Software

 Overview Page

.zip File With All

Download into 4 directories, and put each in Matlab path

TestProgramAndData.zip

 

Course Information

Class Meetings:

Tuesday – Thursday 9:30 – 10:45,   Hanes Hall 125

Instructor:

Steve Marron, Professor

Email:

marron@unc.edu

Office:

Hanes Hall 352    (in back hall behind central open area on 3rd floor)

Phones:

Office:    919-962-2188
Home:    919-493-2844

Office hours:

When I am in my office (usually M, T, Th, priority to those with appointments)